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Needs for Biological Risk Assessment in
Interspecies Extrapolation
by David B. Clayson*

This paper suggests that not all chemicals shown to be carcinogenic in animals may exert this effect in
humans exposed to much lower amounts of the chemical. It is possible that agents which differ in their
effects in humans and animals may be identified through the application of Biological Risk Assessment
to the experimental results. Chemicals tested in systems in which untreated animals develop high back-
ground yields of tumors or in which high-dose toxicity may be a critical factor in the induction of car-
cinogenesis are suggested as candidates requiring very careful consideration before their carcinogenicity
in humans is assumed.

Introduction
The regulatory process for chemical carcinogens em-

braces three separate but interrelated components:
(a) hazard identification, (b) risk assessment, and (c) risk
management. Carcinogenic hazard identification is gen-
erally based on rodent bioassays employing a range of
doses including the highest tolerable level of the test sub-
stance. This procedure compensates for the use of rela-
tively small groups of rodents (50 aniimals of each sex/
dose level), which is based on economic feasibility (1).

Risk assessment thus involves the determination of
the probable effects on the human population of expo-
sure to lower levels of substances shown to be animal
carcinogens at higher doses. There are usually two
stages in this process: high- to low-dose extrapolation
and interspecies extrapolation. Dose extrapolation is
generally based on one of a number of mathematical
models that fit the data at the relatively high animal
experimental exposures and assume the nature of the
shape of the dose-response curves at lower levels. The
weakness inherent in these models is clearly demon-
strated by the variability of their predictions at low
doses, which may differ by as much as 1,000- to 10,000-
fold, scarcely an acceptable degree of variability (2,3).
Interspecies extrapolation is generally based on two
more assumptions, or "articles of faith": (a) Any animal
carcinogen will be, or is highly likely to be, carcinogenic
in man; (b) The human is as sensitive or more sensitive
to the effects of a carcinogen as is the most sensitive
experimental animal species. In this paper, these as-
sumptions will be questioned in two ways:
*Are there situations in which it is reasonable to be-
lieve there is a probability that a chemical carcinogen

*Bureau of Chemical Safety, Food Directorate, Health Protection
Branch, Health and Welfare Canada, Tunney's Pasture, Ottawa, On-
tario, Canada.

determined at high exposure levels in rodents will
not exert an effect in humans exposed to lower levels
of the agent?

*Is there a better way to demonstrate the quantita-
tive nature of the interspecies differences between
humans and experimental animals than the guess
embodied in article of faith (b)?

If the approaches that are raised to answer these
questions are to be acceptable, there is a further need
to consider how other toxicological evidence may be
used to help establish or deny their acceptability. The
evidence that a rodent bioassay conducted at high dose
levels is inapplicable to humans must be very convincing
indeed. The derivation and validation of answers to
these and similar questions is conveniently called "bi-
ological risk assessment."

Nonrelevant Animal Carcinogens
Attempts to use differences in metabolic activation

to explain absolute differences in species response to
carcinogens have not been overly successful. Miller et
al. (4) suggested that the reason why the guinea pig did
not respond to the carcinogenic effects of N-2-aceta-
midofluorene lay in the failure of this species to meta-
bolically activate the precarcinogen. However, Takeishi
et al. (5) showed, using in vitro techniques, that guinea
pig liver homogenates were able to conduct such acti-
vation and suggested the resistance of the guinea pig
in vivo was due to its superior ability to detoxify the
activated metabolite. Similarly, the rat has for many
years been considered resistant to the bladder carcin-
ogen 2-naphthylamine (6). But Hicks and her colleagues
(7) showed that using test conditions that favored the
production of the active metabolite (i.e., high doses
given at less frequent intervals rather than low doses
given continuously), 2-naphthylamine is an effective rat
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bladder carcinogen. Overall, metabolism per se has not
been shown to be a key factor in identifying agents
active in animals but inactive in humans. Other biolog-
ical factors also need to be considered.

High Tumor Incidences in Untreated
Animals
A number of bioassay systems for the identification

of carcinogens are no longer considered reliable indi-
cators of possible carcinogenicity for humans. These in-
clude the lung adenoma test in strain A mice (8), the
induction of bladder tumors in the presence of urinary
calculus (9), and bladder implantation (10,11). A high
rate of occurrence of tumors in control animals is ap-
parent in the lung adenoma test, whereas urinary cal-
culus by itself leads to a high yield ofbladder carcinomas
(11). No major attempt appears to have been made to
determine if these exceptions to the general assumption
that animal bioassay results apply to humans represent
just isolated examples or reflect a more general situa-
tion.
A possible approach to the difficulty in judging wheth-

er a chemical is or is not carcinogenic in such systems
is implied by the two-stage theory ofcarcinogenesis (12-
15). If naturally occurring tumors, like those that are
induced, arise from initiated cells through a form of
survival competition, it is possible that carcinogens
identified in the presence of high tumor rates in un-
treated animals will include both those that have the
ability to initiate and promote tumor development and
those that are only able to promote or enhance devel-
opment of initiated cells to tumors. If the human tissue
(in contrast to the animal tissue) is deficient in initiated
cells, carcinogenicity found in rodent tests may be ir-
relevant to humans if the test agent is capable only of
promotional action.

It should not be imagined that tissues with apprecia-
ble numbers of enhanceable cells or foci will always
demonstrate a high background tumor incidence per se.
In the EDO1 experiment, the female BALB/c mouse was
chosen because at 24 months it possessed a low rate of
naturally occurring liver cell tumor formation (1-2%).
Groups of mice kept to 33 months produced a 33% yield
of this tumor without carcinogen treatment (16).
An improved assessment of the significance to hu-

mans of carcinogens that are identified in such circum-
stances is of major economic importance. Soderman
(17), in her data base of carcinogens, identified 811
chemicals that were either evaluated by IARC or tested
in the NCI/NTP carcinogenesis bioassay program. Of
these, 120 induced or enhanced mouse liver cell tumors,
and in about 25% (Table 1) this was the only tumor that
was increased in incidence. Some of these chemicals
have been regulated out of commercial use; others are
strictly controlled. The considerations presented here
raise serious questions about the validity of their clas-
sification as complete human carcinogens.
Agents that affect the endocrine systems of the body

present similar but more difficult problems because the

human, as well as the rodent, is controlled by hormones
and endocrine antagonists. The elucidation of whether
any agent is or is not likely to be effective in exposed
humans is a difficult problem and decisions may have to
be based on whether or not the hormonal effect has a
threshold.

High-Dose Toxicity
The maximum tolerated dose (MTD) is used to ensure

that a carcinogen bioassay will not miss labeling a chem-
ical as a carcinogen because too low a dose of the car-
cinogen has been used or because too few animals were
used in this study. Haseman (18) reported that 18 of 31
NTP feeding bioassays would have missed labeling
chemicals as carcinogens if the MTD had not been used.
Haseman did not comment on the possibility that use
of the MTD could have introduced confounding toxico-
logical factors, which make it highly unlikely that all
such results apply to humans exposed to much lower
levels of the agent. This possibility is alluded to in the
U.S. Environmental Protection Agency's "Proposed
Guidelines for Carcinogenesis Risk Assessment" (19):

Positive studies at levels above the MTD should be carefully
reviewed to ensure the responses are not due to factors which
do not operate at exposure levels below the MTD. Evidence
indicating that high dose testing produces tumor responses by
indirect mechanisms should be dealt with on an individual basis.

This statement represents a major advance in think-
ing; however, it is not clear why such high-dose toxicity
should become effective only above the MTD, especially
as our current attempts at definition of MTD lack pre-
cision. It is not difficult to visualize tissue-specific tox-
icity that would have little effect on the overall clinical
condition or body weight of the test animal but might
greatly facilitate carcinogenesis in the particular tissue.
Perhaps the most exciting prospect in this area is

toxicity-related aberrant methylation. Shank and Bar-
rows (20) demonstrated that toxic levels (LD50) of hy-
drazine or carbon tetrachloride led to the transfer of
the methyl group from S-adenosyl methionine to the 0-
6 position of guanine-an effect that leads to genetic
errors after DNA replication. Unfortunately, the tech-
nical difficulties inherent in this observation have pre-
cluded observations on other tissues or dose-response
studies in the rat liver. If these technical difficulties can
be overcome, aberrant methylation may provide one
general route by which high-dose toxicity may act as
an initiating carcinogen in rodents.
Hormonal effects similarly may lead to the dubious

interpretation of a chemical as a carcinogen. For ex-
ample, erythrosine appears to induce only follicular cell
thyroid adenomas. It appears to act as a goitrogen, a
class of chemicals known to induce benign thyroid le-
sions in rats (21).
The most important way in which a chemical at high

doses may aid in tumor formation is by inducing cellular
proliferation. This may arise through cytotoxicity, re-
sulting in cell regeneration as with chloroalkanes in the
rodent liver or by direct stimulation through endocrine
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Table 1. Chemicals listed by Soderman (17) that lead only to mouse hepatic cell tumors despite bioassay in two (or more) species.

Pesticides and halogenated hydrocarbons
Hexachloroethane
Tetrachloroethane
Trichloroethane
Bis(2-chloroethyl)ether
Trichloroethylene
Benzenehexachloride
Hexachlorocyclohexane
(4-Chlorophenyl)-2,2'-dichloroethylene
1, 1-Di(4-ethylphenyl)-2,2-dichloroethane
Dicofol
Pentachlorophenol
Chlorobenzilate
Chloranden
Chlordane
Heptachlor
Dieldrin
Aldrin

Aromatic amines and nitro compounds
Nitrofen
N-Nitro-p-acetophenetide
Nitro-p-phenylenediamine
Dichloro-p-phenylenediamine
Chrysoidine
Nitrobenzimidazole

Other
n-Di(2-ethylhexyl)adipate
n-Dithiobiurea
Phenobarbital
Piperonylsulfoxide
Griseofulvin

or other processes. The work we have been doing with
t-butylhydroxyanisole (BHA) in the Food Directorate
in Ottawa illustrates the point.

Case Report
BHA and other phenolic antioxidants are added to

food to inhibit the development of rancidity during
transportation and storage. Until Ito and his colleagues
(22) demonstrated that 2% BHA in the diet induced rat
forestomach squamous cell carcinoma and papilloma,
BHA was thought to be toxicologically the safest of
these additives. The immediate response to Ito's dis-
covery was that man does not have a forestomach, so
why worry? This argument is specious unless there is
supporting evidence, as there are many examples of
carcinogens that affect different tissues in different spe-
cies.
At the start of our studies we knew (a)BHA was

effective in inducing forestomach tumors when fed at
2% but apparently not at 0.5% in the diet for up to 2
years (22); (b)BHA appeared not to act as a genotoxic
agent in the various mutagenicity and clastogenicity
tests in which it had been studied (23); and (c) at levels
well below the carcinogenic 2% level, Wattenberg (24)
had conclusively shown BHA to be anticarcinogenic.
My colleagues and I decided to feed 2% BHA in the

diet to rats for a short period and observe the conse-
quences by light microscopy and radioautography using
tritiated thymidine, a specific DNA precursor, to mea-
sure the proportion of cells in DNA synthesis prior to
cell division. Since there was some temporary food re-
fusal with 2% BHA, the first observation was made after
9 days and showed that: (a)BHA at 2% induced the
highest level of proliferation along the line of lesser
curvature of the forestomach, the area in which most
tumors subsequently developed; (b) the effect of BHA
was similar whether it was presented in a pellet, ground
into the diet, or dissolved in corn oil and then ground
into the diet; (c)further, dose-response studies sug-
gested a no-apparent-effect level at 0.25% in the diet,

a concentration considerably above the human use level;
and (d) the effect at 27 days was little different than at
9 days (25).

In the second series of studies, rats were fed a range
of concentrations of BHA (2%, 0.5%, 0.25%, 0.1%, and
0.0%) for 91 days, when groups of rats were killed and
the remainder transferred to basal diet and killed at
intervals thereafter (26). This experiment showed that:
(a) the apparent-no-effect-level noted at 9 days was still
present after 91 days; (b) the major effect along the
lesser curvature of the forestomach was still present,
although there was now greater proliferative activity
in the midregion ofthe forestomach; (c) this proliferative
activity was dependent on the continued presence of2%
BHA. Within 1 week of removing the BHA from the
diet, proliferative activity, as measured by 3H-thymi-
dine radioautography, had returned to control levels;
(d) the induced pathological changes were much slower
to regress; minor changes were still apparent 63 days
after removal of BHA from the diet; and (e) from the
appearance of the body weight/time curve for the first
91 days of treatment, 2% BHA in the diet exceeded the
MTD in Ito's original carcinogenicity study (22).
We have initiated a further study to ensure that after

2% BHA is withdrawn from the diet and extensive pro-
liferation ceases, the tumors do not appear or reappear.
At least 6 months more must elapse before these results
are complete. We have also done quite a large number
of 9-day assays on different phenols to determine the
uniqueness of the effect of BHA on the forestomach
epithelium. Other phenols react similarly, but to dif-
ferent degrees as exemplified in the paraben series in
which the methyl ester is apparently without effect but
the n-butyl ester approaches BHA in its effect (27).
The importance of these rat studies is threefold. They

strongly suggest that the important action of BHA on
the rat forestomach is a direct or indirect result of in-
ducing epithelial cell proliferation. It appears that the
effects of 0.5 to 2.0% dietary BHA are an example of
high-dose toxicity that does not cease completely at or
about the MTD but may be present at exposure levels
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below the MTD. These studies also suggest the sort of
changes that must be looked for in short-term studies
in species without a forestomach. A high level ofinduced
forestomach proliferation after a few days ofdosing with
a chemical may indicate later tumorigenicity.
Four subehronic studies have been or are being un-

dertaken in alternate species without a forestomach on
an international basis. Olsen (28) has reported negative
studies in the minipig from Denmark. We have reported
virtually negative studies in the Cynomolgus monkey
(29), while the U.S. has found negative effects of BHA
in dogs (30). A Japanese dog study is awaited. The
completed studies, each with very careful pathological
examination, have all proved negative. In other words,
BHA's effects in rats, and recently in hamsters, do in-
deed appear to be forestomach specific. Although more
detailed knowledge of the mechanism of how BHA ex-
erts its effect and the importance of high-dose levels in
exerting this effect are still needed, current evidence
tends to support the view that BHA is high-dose and
forestomach specific, and may not therefore affect
Homo sapiens. This system provides a model for defin-
ing effects that other high dose level toxicity may have
on tumorigenesis.

Conclusions: Qualitative Analysis
The purpose of biological risk assessment advanced

here is to identify situations in which animal carcinogens
may not be relevant for human safety. Two major sit-
uations have been identified: the presence of high yields
of tumors in the control animals and the possible critical
intervention of high-dose toxicity in the carcinogenic
process. At this prevalidation stage, biological risk as-
sessment can only suggest the probability that an animal
carcinogen is unlikely to be effective in humans. Other
evidence must be carefully weighed to ensure it sup-
ports the conclusions of the primary biological risk as-
sessment. For example, the fact that an agent is struc-
turally related to a known carcinogen, as with the ar-
omatic amines and nitro compounds in Table 1, would
be strong grounds to continue suspecting its likely ef-
fectiveness in man. Although the predictivity of geno-
toxicity tests is presently in doubt because of their rel-
atively poor performance in reproducing the results of
animal bioassays, a consistently positive screen of geno-
toxicity tests would again be grounds for rejecting the
possibility that such a chemical is unlikely to be effective
in man.
On the other hand, if carcinogenicity is in a specific

instance determined to be highly dependent on some
aspects of high-dose toxicity and that toxicity has a
threshold, the possibility that much lower doses of the
agent will affect humans is more remote. This has been
illustrated in the case of BHA, and the approach used
is likely to demonstrate that many similar effects will
be found with other animal carcinogens.

Quantitative Aspects
The preceding arguments suggest that even a mini-

mal consideration of the biology or mechanisms of car-

cinogenesis may indicate that individual chemical car-
cinogens identified in animals may not be effective in
humans. Quantitative aspects of biological risk assess-
ment for carcinogens will clearly need greater and more
probing use of our mechanistic knowledge. Knowledge
of carcinogenic mechanisms is essential if the shape of
the dose-response curve for the induction of tumors in
a particular tissue in a test animal is to be established.
For example, the shape ofbladder and liver tumor dose-
response curves in the EDO1 experiment are very dif-
ferent from each other (16). Without appreciation of the
underlying biology of tumor induction, we must make
large assumptions about the probable low dose risk from
N-2-acetamidofiuorene for these tissues. Clearly, no one
mathematical model is adequate to account for the dif-
ferent dose-response curves.
Another series of problems is presented by the need

to extrapolate the results of many carcinogenesis bioas-
says quantitatively between species and thence to man.
There is very little experimental work in this area, per-
haps the most relevant being that of Booth et al. (31),
who showed that in vitro, liver slices from rats, mice,
and hamsters bound aflatoxin B1 to their DNA in the
same order as the potency of the mold product for the
induction of liver cancer in these species (rat >> ham-
ster > mouse). Human liver slice DNA bound aflatoxin
B1 to an extent intermediate between mice and ham-
sters, suggesting that humans are not exquisitely sen-
sitive to this chemical as are rats (Table 2).

This approach seems very appropriate for comparing
activities of genotoxic carcinogens which, for one reason
or another, are not possible to exclude from our societal
environment. From the mechanistic viewpoint, the low
exposure levels to which humans are to be normally
subjected are unlikely to markedly and consistently af-
fect the processes concerned in fixation ofDNA adducts
or other lesions (i.e., DNA replication or DNA repair
systems). Similarly, these levels are unlikely to have a
major influence on the processes that lead to tumor
development. Therefore the interspecies comparison of
the level of DNA adduct formation may provide a suit-
able method for the more accurate assessment of the
quantitative effect of low level genotoxic carcinogen ex-
posures in experimental animals and humans. However,
much more work is needed in these quantitative ex-
trapolation areas if their promise of a rational approach
is to become fact.

Table 2. DNA adduct formation to liver DNA after incubating
aflatoxin B1 with liver fragments.a

Carcinogenicity Bindinge
Rat ++++ 31.7
Hamster + + 11.3
Mouse + 1.3
Human 6.8
aModified from Booth et al. (31).
bNanograms aflatoxin B1/nanogram DNA.
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Overview
At this time a carcinogen is defined as any agent or

process that increases the yield oftumors in a population
(32). It has been suggested in this paper that carcino-
gens may exert their effects through a variety of dif-
ferent mechanisms and that interspecies extrapolation
requires knowledge of, at least, the nature of these
mechanisms and their ability to act in individual animal
species and their tissues. It is only by the replacement
of articles of faith by scientifically based methodology
that we will be able to attain knowledge of which of the
many presently identified carcinogens are likely to be
truly disastrous for individual men and women.

In conclusion, this paper suggests that if the com-
munity has the will, the way to a more precise under-
standing of the risks of carcinogens to humans is almost
within our grasp. Overall, the position can be well sum-
marized by a quote from George Orwell's Animal Farm
(33), "All animals are equal but some animals are more
equal than others." Biological risk assessment is sug-
gested as a method to separate the "equal" from the
"more equal."
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